US ERA ARCHIVE DOCUMENT # Comparison of Process Technology MIDREX vs. ENERGIRON June 6th, 2013 ### Goal of Process: Convert Pellets into HBI Pellets min. 66 % Fe **Direct Reduction** HBI min. 91 % Fe **Hot Briquetted Iron** # Available Process Technology: MIDREX / ENERGIRON Reducing gas $$CH_4 + CO_2 = 2CO + 2H_2$$ $$2CH_4 + O_2 = 2CO + 4H_2$$ **Reduction process** $$Fe_2O_3 + 6CO(H_2) = 2Fe + 3CO_2(H_2O) + 3CO(H_2)$$ # Example MIDREX: LGOK ### LGOK II (Midrex): Gubkin, Russland Capacity: 1,4 Mill. t HBI Start up: 2007 # **Example Energiron: Emirates Steel** **Start up: 2011** ### Comparison: MIDREX vs. ENERGIRON | | MIDREX/SVAI | ENERGIRON/Danieli | |-------------------|---|--| | Core Process /HBI | Reducing gas from reformer Low pressure level (2 bar), high gas velocity Briquetting process Discharge system HDRI retrofittable | Reducing gas from partial oxidation and in-situ reforming High pressure level (8 bar), low gas velocity Briquetting process Discharge system HDRI retrofittable | | Reference units | LGOK 2 (1,4 mt HBI) JINDAL Shadeed (1,5 mt HBI) LGOK 3 (1,8 mt HBI, 2015) Design and operation up to 2,0 Mio t DRI/HBI | TERNIUM 4M (1,0 mt HDRI) SUEZ (2,0 mt HDRI, 2013) NUCOR (2,5 mt CDRI, 2013) No reference plant Zero Reformer (ZR) in combination with HBI Design and under construction up to 2,5 Mio t DRI | | Control range | 60-100% of nominal output | 60-100% of nominal output | | CO2 removal | Part of CO2 is used for the reforming process | Integrated in the ZR process concept | ### Reactor ### **MIDREX** shaft ### Flow feeder ### **LION DRI** Screw Feeder Briquetting Machine Briquette Strand Separator ### Briquetting decks Energiron ZR # Comparison: Reactor | | MIDREX/SVAI | ENERGIRON/Danieli | |--------------------|--|---| | Coating | After day bins. In case of different oxide qualities no specific coating. Short time for drying. | Prior day bins. Scpecific coating in case of different oxide qualities. Drying in day bins. | | Material feed | Vertical conveyor into charge hopper
Central down pipe with upper seal leg
Distribution to 16 down pipes into the reactor. | Vertical conveyor into charge hopper. 4 pressurized charging bins. 4 down pipes into the reactor. | | Material flow | Upper
Middle Burden feeder
Lower | Flow feeder
Cluster breaker | | Material discharge | Central down pipe with lower seal leg
Product discharge chamber | Rotary valve 2 pressurized discharge bins | | HDRI/CDRI | Retrofittable at briquetting level | Retrofittable before discharge bin | | Size of shaft | 7,1 m diameter | 6,3 m diameter | | Tower height | 131 m | 138,5 m | ### Comparison: Briquetting | | MIDREX/SVAI | ENERGIRON/Danieli | |---------------------|---|--| | Briquetting | 1 distributing bin 6 (7) Briquetting machines each with 40 t/h. | 2 Distributing bins
6 (7) Briquetting machines each with 40 t/h | | HBI fines recycling | Hot screening after briquetting and recycling to briquetting machines via vertical conveyor. | Hot screening after briquetting and recycling to briquetting machines via vertical conveyor. | | HBI cooling | 2 steel plate conveyor belts with spray-cooling. Full flexibility between briquetting machines and cooling conveyors. | 2 steel plate conveyor with spray-cooling. Limited flexibility between briquetting machines and cooling conveyors. | ### Comparison: Process gas | | MIDREX/SVAI | ENERGIRON/Danieli | |--------------------------------------|---|---| | Reducing gas production | Reformer = Recuperative heat exchanger with endothermic reforming reaction. 600 pipes with Ni-catalyst. Reforming of CH4 with CO2 from recycled process gas at Ni-catalyst. | Heater = Recuperative heat exachanger. 80 bundles of pipes (Coils) with convection and radiation section. Partial oxidation of CH4 with O2 before rector. In-situ reforming of this gas at metallic bulk material in the reduction shaft. | | Temperatur/flow rate of reducing gas | Approx. 980 °C (bevor CH4 addition), 380.000 Nm3/h | Approx. 970 (before O2 addition) °C, 540.000 Nm3/h | | Top gas cleaning | Approx. 350 °C, .000 Nm3/h. Venturi/package scrubber | Approx. 470 °C, 640.000 Nm3/h. Heat recovery for CO2 removal . Venturi scrubber. | | Gas compression | 2 serial radial compressors. Approx 60 % production capacity with 1 compressor possible. | 2 parallel radial compressors. Approx. 60 % production capacity with 1 compressor possible. | | Life time reducing gas production | Replacement pipes every 10 years and catalyst every 5 years
Replacement of single pipe during Standby-operation possible. | Replacement bundles every 10 years Replacement of single pipe during Standby-operation possible | | Gas sealing | Tightening via seal leg and seal gas system. | Tightening via pressure locks | ### Comparison: Consumption figures | | MIDREX/SVAI | ENERGIRON/Danieli | |-----------------|--------------------------|------------------------------------| | Oxide input | Approx 1,4 to/to HBI | Approx.1,4 to/to HBI | | Natural gas | < 13 MMBtu / to HBI | < 13 MMBtu / to HBI | | O_2 | Not necessary | Approx. 60 m ³ / to HBI | | N_2 | Not necessary | Approx. 75 m ³ / to HBI | | Electric energy | Approx. 125 kWh / to HBI | Approx. 115 kWh / to HBI | | Personal years | Approx. 150 | Approx. 150 | | | | |